How BGP Graceful Restart Preserves Prefix Information During a Restart?

When a router that is capable of BGP Graceful Restart loses connectivity, the following happens to the restarting router:
1. The router establishes BGP sessions with other routers and relearns the BGP routes from other routers that are also capable of Graceful Restart. The restarting router waits to receive updates from the neighboring routers. When the neighboring routers send end-of-Routing Information Base (RIB) markers to indicate that they are done sending updates, the restarting router starts sending its own updates.
2. The restarting router accesses the checkpoint database to find the label that was assigned for each prefix. If it finds the label, it advertises it to the neighboring router. If it does not find the label, it allocates a new label and advertises it.
3. The restarting router removes any stale prefixes after a timer for stale entries expires.

When a peer router that is capable of BGP Graceful Restart encounters a restarting router, it does the following:
1. The peer router sends all of the routing updates to the restarting router. When it has finished sending updates, the peer router sends an end-of RIB marker to the restarting router.
2. The peer router does not immediately remove the BGP routes learned from the restarting router from its BGP routing table. As it learns the prefixes from the restarting router, the peer refreshes the stale routes if the new prefix and label information matches the old information

Post a Comment

Popular posts from this blog

Pairwise Master Key (PMK) vs Parewise Transient Key(PTK) vs PseudoRandom Function(PRF) vs GTK (Groupwise Transient Key)

DSSS(直接序列展頻技術) vs OFDM(正交頻率多重分割)